Quantitative Microarray Profiling of DNA-Binding Molecules
نویسندگان
چکیده
منابع مشابه
Quantitative microarray profiling of DNA-binding molecules.
A high-throughput Cognate Site Identity (CSI) microarray platform interrogating all 524 800 10-base pair variable sites is correlated to quantitative DNase I footprinting data of DNA binding pyrrole-imidazole polyamides. An eight-ring hairpin polyamide programmed to target the 5 bp sequence 5'-TACGT-3' within the hypoxia response element (HRE) yielded a CSI microarray-derived sequence motif of ...
متن کاملContext influences on TALE–DNA binding revealed by quantitative profiling
Transcription activator-like effector (TALE) proteins recognize DNA using a seemingly simple DNA-binding code, which makes them attractive for use in genome engineering technologies that require precise targeting. Although this code is used successfully to design TALEs to target specific sequences, off-target binding has been observed and is difficult to predict. Here we explore TALE-DNA intera...
متن کاملDNA profiling using solid-state nanopores: detection of DNA-binding molecules.
We present a novel single-molecule method for rapidly evaluating small-molecule binding to individual DNA molecules using nanopores fabricated in ultrathin silicon membranes. A measurable shift in the residual ion current through a approximately 3.5 nm pore results from threading of a dye-intercalated DNA molecule, as compared to the typical residual current of native DNA. The average level of ...
متن کاملGene expression profiling by DNA microarray technology.
Methods in molecular and genetic biology have provided important clues to elucidate the complex mechanisms of oral and craniofacial development and pathogenesis of diseases. It has become increasingly clear that a biological phenotype is a result of multiple factors involving a large number of regulatory genes, while a single nucleotide mutation can cause various degrees of oral and craniofacia...
متن کاملQuantitative isoform-profiling of highly diversified recognition molecules
Complex biological systems rely on cell surface cues that govern cellular self-recognition and selective interactions with appropriate partners. Molecular diversification of cell surface recognition molecules through DNA recombination and complex alternative splicing has emerged as an important principle for encoding such interactions. However, the lack of tools to specifically detect and quant...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the American Chemical Society
سال: 2007
ISSN: 0002-7863,1520-5126
DOI: 10.1021/ja0744899